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Abstract.11

Background: Structural brain imaging metrics and gene expression biomarkers have previously been used for Alzheimer’s
disease (AD) diagnosis and prognosis, but none of these studies explored integration of imaging and gene expression
biomarkers for predicting mild cognitive impairment (MCI)-to-AD conversion 1-2 years into the future.
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Objective: We investigated advantages of combining gene expression and structural brain imaging features for predicting
MCI-to-AD conversion. Selection of the differentially expressed genes (DEGs) for classifying cognitively normal (CN)
controls and AD patients was benchmarked against previously reported results.
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Methods: The current work proposes integrating brain imaging and blood gene expression data from two public datasets
(ADNI and ANM) to predict MCI-to-AD conversion. A novel pipeline for combining gene expression data from multiple
platforms is proposed and evaluated in the two independents patient cohorts.
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Results: Combining DEGs and imaging biomarkers for predicting MCI-to-AD conversion yielded 0.832-0.876 receiver
operating characteristic (ROC) area under the curve (AUC), which exceeded the 0.808-0.840 AUC from using the imaging
features alone. With using only three DEGs, the CN versus AD predictive model achieved 0.718, 0.858, and 0.873 cross-
validation AUC for the ADNI, ANM1, and ANM2 datasets.
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Conclusion: For the first time we show that combining gene expression and imaging biomarkers yields better predictive
performance than using imaging metrics alone. A novel pipeline for combining gene expression data from multiple platforms
is proposed and evaluated to produce consistent results in the two independents patient cohorts. Using an improved feature
selection, we show that predictive models with fewer gene expression probes can achieve competitive performance.
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INTRODUCTION30

According to a 2018 press release by the US Cen-31

ters for Disease Control and Prevention (CDC), the32

population growth in the US will be accompanied33

by more than doubling of Alzheimer’s disease (AD)34

prevalence by 2060 [1]. Longer lifespan in devel-35

oped countries may also lead to a greater portion36

of the population experiencing age-related cogni-37

tive deficits such as stable mild cognitive impairment38

(sMCI), and progressive MCI (pMCI) leading to AD.39

Research by Ganguli et al. suggests that individuals40

with some form of MCI have up to 20 times greater41

risk of converting to AD than their cognitively normal42

(CN) counterparts [2]. The much higher AD risk for43

the MCI group makes AD screening for this group44

clinically more relevant than screening healthy aging45

adults.46

Extensive research over the past 40 years into47

AD pathology has elucidated several key aspects of48

neuronal changes associated with AD, yet the exact49

mechanism of disease progression continues to be50

unknown. The AD pathology in the brain can be51

broadly divided into three types: 1) damage related to52

accumulation of toxic material; 2) lesions character-53

ized by tissue loss; and 3) reactive processes such54

as inflammation and plasticity [3]. Currently, AD55

is diagnosed with neuropsychological assessment,56

followed by brain imaging to confirm characteris-57

tic AD pathology in the brain. Alzheimer’s Disease58

Neuroimaging Initiative (ADNI) and AddNeuroMed59

(ANM) datasets provide access to multimodal data60

related to AD diagnosis and progression, collected61

from multi-center patient population in the US and62

Europe, respectively. While structural MRI data63

may likely be the most commonly accessed part64

of these repositories, the ADNI and ANM datasets65

also contain clinical and demographic information,66

Apolipoprotein E (APOE) status, and gene expres-67

sion levels collected from blood samples. Lebedev et68

al. used 24 cortical thickness and volume markers,69

along with APOE, age, and education, for predicting70

CN versus AD (84.2-90.7% Sensitivity, 82.9-88.3%71

Specificity) and MCI-to-AD conversion (78.0-79.0%72

Sensitivity, 82.9% Specificity) in the ADNI and ANM73

cohorts [4]. Besides requiring a significant amount74

of testing, incurring substantial costs, and potentially75

requiring an invasive injection of a radioactive sub-76

stance, this approach is limited by the availability of a77

magnetic resonance imaging (MRI) or positron emis-78

sion tomography (PET) scanner, and scales poorly to79

resource-limited populations.80

On the other hand, blood biomarkers, such as 81

gene expression, provide a readily available and cost- 82

effective source of diagnostic information. The major 83

issue with using blood gene expression for AD diag- 84

nosis is that multiple organs and tissues contribute to 85

the observed transcriptional profile. Some other chal- 86

lenges with using transcriptional profile biomarkers 87

for predicting disease progression arise from a vary- 88

ing sample dilution affecting differentially expressed 89

gene (DEG) identification [5], lab-to-lab variability 90

[6], and inter-platform differences between various 91

manufacturers [7]. In the case of neurological condi- 92

tions such as AD, it remains to be seen whether DEGs 93

in the blood can provide useful diagnostic informa- 94

tion by themselves, and in addition to the known 95

structural MRI biomarkers. To simultaneously eval- 96

uate both sensitivity and specificity of the DEGs and 97

imaging biomarkers we will use the receiver operat- 98

ing characteristic (ROC) area under the curve (AUC) 99

metric, which represents the AUC of the model sensi- 100

tivity plotted versus the false positive rate, defined as 101

(1-Specificity). This metric ranges from zero to one, 102

with the latter representing ideal model performance. 103

Lee et al. recently built a predictive model for 104

distinguishing individuals with AD from healthy con- 105

trols using ADNI and ANM (ANM1 and ANM2) 106

datasets [8]. They identified 334 DEGs that were used 107

with L1 normalized logistic regression (L1-LR) to 108

train on ADNI dataset and test on ANM1 dataset, 109

achieving ROC AUC of 0.70. The pathway anal- 110

ysis revealed that AD-related genes were enriched 111

with inflammation, mitochondria, and Wnt signaling 112

pathways. Voyle et al. [9] compared the performance 113

of three Random Forest predictive models for dis- 114

tinguishing individuals with AD from non-demented 115

controls using ANM gene expression data: 1) demo- 116

graphic data model included sample collection site, 117

age, years of full-time education; 2) demographic 118

and gene expression model; and 3) pathway analy- 119

sis model. The demographic model achieved the best 120

AUC ROC of 0.771, followed by pathway and gene 121

expression models achieving 0.729 and 0.724 AUC 122

ROC. The authors concluded that the pathway model 123

did not have any performance advantage over the gene 124

expression model. 125

While most studies have focused on classifying AD 126

versus CN condition, few have examined MCI either 127

as a separate category, or considered predicting con- 128

version from MCI to AD. Using the ADNI dataset, 129

Miller et al. found the CLIC1 gene to be the only DEG 130

between CN, MCI, and AD conditions [10]. While 131

their algorithm achieved high cross-validation AUC 132
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of 0.906 for predicting AD, the performance was not133

verified on an internal or external test data set. Lunnon134

et al. reported 0.78 sensitivity for correctly predict-135

ing conversion from MCI to AD within 2 years in the136

ANM1 dataset, albeit with poor specificity of 0.25137

[11]. Their random forest classifier used 48 genes,138

corresponding to 50 probes. Using a relatively small139

MCI dataset (N = 66, 34 pMCI) collected from 8 cen-140

ters in Norway and Sweden, Roed et al. reported 0.73141

sensitivity and 0.81 specificity for predicting MCI-to-142

AD conversion within 2 years [12]. The performance143

metrics above were calculated using leave-one-out144

cross-validation, which in some cases is known to145

provide a more optimistic estimate of performance146

than a more conservative evaluation with an indepen-147

dent test set.148

Challenges for wider adoption of gene expression149

markers in clinical practice arise in some instances150

from the inability to reproduce classifier performance151

in independent population cohorts and very little con-152

sistency between the sets of gene expression markers153

identified in various studies [13]. One of the strengths154

of the current study stems from using two indepen-155

dent datasets, the ADNI and ANM population cohorts156

originating from US and Europe, respectively. ADNI157

and ANM datasets have been acquired on differ-158

ent platforms (Affymetrix and Illumina respectively),159

making the findings of the current study platform-160

agnostic and more clinically applicable than insights161

from a single instrument platform. In general, con-162

firming DEG consistency across different platforms163

presents a challenge due to several factors: a) differ-164

ence in technology for measuring gene expression165

(bead versus microarray), b) probes targeting the166

same gene at different chromosome locations, c)167

alternate splicing. As an example, Li et al. could168

not confirm any of the ANM-identified DEGs in the169

ADNI dataset [14]. A novel processing pipeline is170

proposed here to address platform differences and171

avoid shortcomings associated with averaging probes172

targeting the same gene [15]. By showing the incon-173

sistency of most DEGs identified with a single dataset174

analysis, we further show the benefit of using multi-175

ple datasets to identify and confirm DEGs associated176

with AD.177

MATERIALS AND METHODS178

Data used in the preparation of this arti-179

cle were obtained from the ADNI database180

(http://adni.loni.usc.edu). The ADNI was launched181

in 2003 as a public-private partnership, led by Prin- 182

cipal Investigator Michael W. Weiner, MD. The 183

primary goal of ADNI has been to test whether serial 184

MRI, PET, other biological markers, and clinical and 185

neuropsychological assessment can be combined to 186

measure the progression of MCI and early AD. 187

Gene expression data processing 188

Whole blood samples were collected and analyzed 189

on two different platforms, with ADNI and ANM data 190

having been acquired on Affymetrix Human Genome 191

U219 and Illumina HumanHT-12 (v3 and v4) Expres- 192

sion BeadChip platforms, respectively. In order to 193

facilitate comparison between these platforms, only 194

genes targeted on both platforms (N = 14,498) have 195

been included in the subsequent analysis (Fig. 1). 196

Focusing on the shared genes reduced the number 197

of probes from 49,386 to 38,947 for ADNI, from 198

38,324 to 29,485 for ANM1, from 32,051 to 20,177 199

for ANM2 datasets. Age and the number of APOE 200

ε4 alleles are known risk factors for AD onset and 201

were accounted for with a General Linear Model 202

(GLM) [16] in ADNI and ANM datasets indepen- 203

dently. Additional annotation information for the 204

DEGs was obtained through the National Center for 205

Biotechnology Information database [17]. 206

Classification of AD versus CN using DEGs 207

The ADNI training set for this classification task 208

included 162 (38 AD) cases, and the test set had 209

74 (21 AD) cases, according to the 67/33% random 210

split (Table 1). The ANM1 training and testing sets 211

consisted of 105 (56 AD) cases and 45 (24 AD) 212

cases, respectively. The ANM2 training and testing 213

sets included 82 (44 AD) and 35 (19 AD) cases, 214

respectively. The three datasets were simultaneously 215

evaluated to find the DEGs for classifying CN ver- 216

sus AD, regardless of the platform. Cross-validation 217

and test ROC AUC metrics were compared for fitting 218

the logistic regression model within each individual 219

dataset. The stopping criteria for adding new DEGs 220

to the final feature set was defined as having less than 221

0.015 improvement in cross-validation ROC AUC in 222

any one of the three datasets. 223

Gene expression data for MCI-to-AD conversion 224

Due to the limitations within the available data, 225

conversion to AD was examined within 2 years in 226

ADNI and 1 year in ANM1. The ADNI MCI pop- 227

http://adni.loni.usc.edu
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Fig. 1. Workflow for processing and eventually combining CN versus AD DEGs identified in the three datasets available, acquired on
Affymetrix and Illumina platforms.

Table 1
Participant characteristics from the two independent datasets, ADNI and ANM (part 1 and 2), included in the current study. Age and MMSE

are shown as mean ± SD, whereas the APOE ε4 carriers field shows percentage of participants with at ≥ 1 APOE ε4 risk allele

ADNI ANM1 ANM2
CN AD sMCI pMCI CN AD sMCI pMCI CN AD

Number of Cases 177 59 193 39 70 80 55 23 54 63
Age 76.2 ± 6.7 76.8 ± 7.2 71.1 ± 7.6 73.7 ± 7.5 73.7 ± 7.5 76.0 ± 6.6 74.5 ± 5.3 74.9 ± 5.9 75.7 ± 6.1 78.6 ± 5.6
Gender, % Males 48.0% 61.0% 52.3% 56.4% 37.1% 30.0% 47.3% 34.8% 31.5% 34.9%
APOE ε4 Carriers 26.0% 74.6% 37.3% 74.4% 35.7% 56.3% 27.3% 56.5% 18.5% 54.0%
MMSE 29.2 ± 1.1 21.9 ± 3.3 28.2 ± 1.5 27.0 ± 1.8 29.1 ± 1.1 20.9 ± 4.7 27.1 ± 2.0 26.4 ± 1.7 28.4 ± 1.7 19.6 ± 4.6

ulation at baseline (N = 279) was separated into the228

training and testing sets according to a 67/33% ran-229

dom split, yielding 188 (32 pMCI) and 91 (13 pMCI)230

cases in each set, respectively. Similar train/test par-231

titioning resulted in 60 (21 pMCI) and 25 (8 pMCI)232

assigned to the train/test sets in ANM1, and 39 (7233

pMCI) and 16 (2 pMCI) assigned to the train/test sets234

in ANM2. Similar to the CN versus AD classification,235

the impact of age and the number of APOE ε4 alle-236

les on transcriptional profile was accounted for with237

a linear regression [16] in ADNI and ANM datasets 238

independently (Fig. 2). 239

Imaging data for MCI-to-AD conversion 240

For both ADNI and ANM datasets, T1-weighted 241

images were acquired on a 1.5T MRI scanner. Struc- 242

tural imaging metrics included cortical volume and 243

regional thickness estimates from FreeSurfer soft- 244

ware [18] for ADNI (FreeSurfer v5.1) and ANM1 245



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

V.I. Dobromyslin et al. / Gene expression biomarkers of AD progression 5

Fig. 2. Workflow for combining gene expression and imaging biomarkers for predicting MCI-to-AD conversion.

(FreeSurfer v5.3). Only brain scans with passing246

quality control status were included for subsequent247

analysis in both ADNI and ANM datasets. The248

logistic regression model integration of imaging and249

gene expression markers required eliminating sub-250

jects with incomplete imaging or gene expression251

data. In the ANM2 dataset, only 22 subjects had252

both gene expression and imaging data, and this253

dataset was excluded from further imaging analy-254

sis. The final ADNI training/test sets included 156255

(28 pMCI) and 76 (11 pMCI) subjects, respectively,256

whereas the final ANM1 dataset consisted of 56257

(18 pMCI) and 22 (5 pMCI) training/test subjects,258

respectively (Table 1). To account for head size vari-259

ation, FreeSurfer computed intracranial volume was260

regressed out from other volume estimates. Follow-261

ing the methodology proposed by Lebedev et el.,262

24 structural MRI metrics for predicting MCI-to-AD263

conversion were used as a starting point [4]. Due264

to a significantly higher number of subjects in the 265

ADNI dataset compared to the ANM1, the selection 266

of imaging and demographic markers for MCI-to-AD 267

conversion was performed exclusively in the ADNI 268

dataset. Age, gender, education, and APOE informa- 269

tion were initially combined with the 24 structural 270

MRI metrics, yielding 28 features, in the LR model 271

to predict MCI-to-AD conversion. To improve the 272

predictive model’s sparsity and interpretability, with- 273

out the loss of performance, we used a sequential 274

backward feature selection, initialized with the full 275

28-feature dataset, and eliminated redundant features 276

one-at-a-time. 277

Enhancing imaging marker performance with gene 278

expression for predicting MCI-to-AD conversion 279

Baseline cross-validation AUC was calculated 280

separately for ADNI (denoted as AUC0,ADNI) 281

and ANM1 (denoted as AUC0,ANM1) using solely 282

imaging-demographic features. Augmenting 283



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

6 V.I. Dobromyslin et al. / Gene expression biomarkers of AD progression

imaging and demographic markers with gene284

expression data involved first finding all the probe285

combinations between ADNI and ANM1 pointing286

to the same gene (Fig. 2). Next, the fold change287

between AD converters and non-converters was288

calculated for each probe combination and compared289

between ADNI and ANM1 datasets. The probe290

combinations with fold change trending in the291

same direction were simultaneously added to the292

initial imaging-demographic feature sets In ADNI293

and ANM1, one-at-a-time. A pair of candidate LR294

models was subsequently trained independently295

in the ADNI and ANM1 datasets, yielding a set296

of new cross-validation AUCs, AUCNew,ADNI and297

AUCNew,ANM1, for ADNI and ANM1 respectively.298

We estimated the relative AUC improvement in each299

dataset from baseline as a vector [AUCNew,ADNI –300

AUC0,ADNI, AUCNew,ANM1 – AUC0,ANM1]. To cap-301

ture the overall improvement in both datasets with a302

single metric, we calculated minimum improvement303

in cross-validation AUC as min([AUCNew,ADNI304

– AUC0,ADNI, AUCNew,ANM1 – AUC0,ANM1]).305

Probes were sorted in the descending order of306

minimum cross-validation AUC improvement, with307

the most promising probes at the top of the list. To308

further select the “winning” probe, individual cross-309

validation improvements from ADNI and ANM1310

were weighted by the respective dataset size. The311

resulting metric had 73.6% of the weight determined312

by ADNI (N = 156 subjects), and the remaining313

26.4% of the weight determined by ANM1 (N = 56314

subjects). Final probe selection consisted of picking315

the probe with highest weighted cross-validation316

AUC improvement from the top 10 candidates in317

the original list. Following the selection of the318

first probe, other probes were evaluated in the same319

fashion, with the only difference being that they were320

evaluated against the previous best feature set, which321

included the last best probe. The stopping criteria322

for adding new DEGs to the final feature set was323

defined as having less than 0.015 improvement in324

cross-validation AUC in any one of the two datasets.325

Predictive model interpretability326

Logistic regression represents a special case of327

generalized additive models, where the outcome is328

modelled as a linear combination of each factor’s329

contribution to the log-odds ratio. Deviance in logis-330

tic regression describes the discrepancy between331

the estimated maximum likelihood value and the332

observed value, and has been previously used to333

estimate feature importance for predicting a clinical 334

endpoint [19]. To assess individual feature contri- 335

butions in the final model predictive performance, 336

change in deviance was calculated by iteratively elim- 337

inating one of the features in the model, re-fitting the 338

reduced model, and comparing the resulting deviance 339

of the reduced model to that of the full model. A 340

large increase in deviance suggests that the elimi- 341

nated variable plays an important role in the model. 342

Since change in deviance for eliminating a single 343

factor from the model follows a chi-squared distri- 344

bution with one degree of freedom, p-values can be 345

iteratively estimated for all included factors. 346

RESULTS 347

Classification of AD versus CN using DEGs 348

For the task of classifying AD from CN based on 349

transcriptional profile, the current pipeline selected 350

three DEGs with consistent fold change across all 351

three datasets. The final set of DEGs consisted of 352

NGDN, DFFB, and NDUFS5. Fitting a LR model 353

independently to each of the three training datasets 354

yielded the following performance as measured by 355

cross-validation set ROC AUC: 0.718, 0.858, and 356

0.873 for the ADNI, ANM1, and ANM2 datasets 357

respectively (Fig. 3). Models were further evaluated 358

on the three test sets (one for each data subset), yield- 359

ing 0.659, 0.903, and 0.737 ROC AUC for the ADNI, 360

ANM1, and ANM2 datasets, respectively. 361

We used the change in deviance to estimate individ- 362

ual feature contribution in the LR models described 363

above, see Table 2. In the ADNI dataset two of the 364

three selected gene probes, NGDN and DFFB, could 365

account for most of the change in deviance and were 366

also statistically significant at p < 0.05 level. On the 367

other hand, in the ANM1 and ANM2, the third gene 368

probe, NDUFS5, accounted for the largest change in 369

deviance. This probe was statistically significant at 370

p < 0.05 level in the ANM2 dataset, but not in the 371

ANM1 dataset. 372

Predicting MCI-to-AD conversion by combining 373

imaging and gene expression 374

Initial ADNI features used for developing an MCI- 375

to-AD predictive model included 24 MRI-derived 376

structural metrics, age, gender, education, and APOE 377

information. LR model developed with these features 378

yielded 0.782 and 0.759 AUC for the cross-validation 379
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Fig. 3. ROC plots with LR model, trained on the 3 DEGs for classifying CN versus AD, after adjusting for age and APOE ε4 alleles. The
following AUC metrics were calculated for five-fold cross-validation, and for internal test datasets (reported in parentheses): 0.718 (0.659),
0.858 (0.903), and 0.873 (0.737) for ADNI, ANM1, and ANM2 datasets respectively.

Table 2
Variable contributions to the CN versus AD model performance, characterized by the change in deviance and corresponding statistical

significance from the Chi-Squared distribution. Values in bold highlight statistically significant results at p < 0.05

Variable-to- ADNI ADNI ANM1 ANM1 ANM2 ANM2
Eliminate Change in p Change in p Change in p

Deviance Deviance Deviance

NGDN 4.57 3.3E-2 0.41 5.2E-1 0.71 4.0E-1
DFFB 4.48 3.4E-2 1.17 2.8E-1 3.68 5.5E-2
NDUFS5 2.44 1.2E-1 3.40 6.5E-2 4.35 3.7E-2

and test sets, respectively. Following step-wise back-380

ward feature selection, the final reduced model381

achieved 0.840 cross-validation and 0.794 test AUC,382

with the feature set consisting of the right hippocam-383

pus volume and the number of APOE risk alleles384

(Fig. 4a). When the same two features were used to385

derive LR model in the ANM1 dataset, the model had386

0.808 cross-validation and 0.718 test AUC (Fig. 4b).387

The search for gene probes to enhance imaging-388

APOE model performance yielded a single probe,389

associated with the DUSP13 gene, that 1) showed390

consistent fold change direction in all three datasets,391

2) improved cross-validation AUC from 0.840 to392

0.876, and from 0.808 to 0.832 in the ADNI and393

ANM1 datasets respectively, and 3) improved test set394

AUC from 0.794 to 0.820 in ADNI and from 0.718 to395

0.741 in the ANM1 datasets. We performed a Monte396

Carlo simulation with 10,000 iterations to examine397

the statistical significance of these AUC increases. In398

each iteration, 25% of the ADNI and ANM1 train-399

ing sets was randomly sampled without replacement400

and allocated for validation, whereas the remaining401

75% of the training set was randomly sampled with402

replacement and used to train LR models. The results403

from 10,000 iterations yielded 95% confidence inter-404

vals of [0.0241, 0.0261] and [0.003,0.0078] for the405

increase in AUC in the ADNI and ANM1 respec-406

tively. Performing a t-test for the increase in AUC407

confirmed statistical significance at p < 0.05 for both 408

datasets. 409

Figure 5 shows the transcriptional profile for the 410

DUSP13 targeting probe in each of the three datasets. 411

Interestingly, the expression level measured by this 412

probe in ADNI is far lower than that in ANM1 413

and ANM2 datasets, yet the 0.22 ADNI fold change 414

exceeds the 0.02-fold change in both ANM1 and 415

ANM2 datasets. To further examine DUSP13 contri- 416

bution to the final predictive model, we examined the 417

change in deviance (Table 3). The DUSP13 contribu- 418

tion to deviance met statistical significance at p < 0.05 419

in the ADNI, but not in the ANM1. For the ANM1 420

dataset, the DUSP13’s change in deviance of 2.67 421

exceeded that of APOE status (0.22), a known risk 422

factor for AD. To a lesser extent, in ADNI, DUSP13’s 423

change in deviance (4.33) came close to that of APOE 424

(4.88). Right hippocampus volume proved to have the 425

greatest contribution to the predictive model. 426

Table 4 provides additional information related 427

to the DEGs identified in the current study to 428

be associated with AD disease progression. DEGs 429

related to nervous system development (NGDN 430

gene), apoptosis (DFFB gene), and mitochondrial 431

function (NDUFS5 gene) were identified for CN 432

versus AD classification. DUSP13 gene, identified 433

for improving MCI-to-AD conversion, regulates cell 434

proliferation and differentiation. 435
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Fig. 4. ROC plots with LR model, trained on the right hippocampal volume and number of APOE alleles (a and b), augmented with DUSP13
gene expression level for predicting conversion from MCI to AD (c and d). The following AUC metrics were calculated for five-fold cross-
validation, and for internal test datasets (reported in parentheses): 0.840 (0.794), 0.808 (0.718), 0.876 (0.820), and 0.832 (0.741) for a-d,
respectively.

DISCUSSION436

Classification of AD versus CN using DEGs437

Despite the common perception that the gene438

expression data in the blood is noisy and may not be439

of sufficient diagnostic quality for AD prediction, the440

classifier performance presented here suggests that441

there is some diagnostic utility in considering blood442

gene expression data for this purpose. With only three443

DEGs, the LR model in the current study reached444

0.718, 0.858, and 0.873 cross-validation AUC com-445

parable to the previously reported 0.657, 0.874, and446

0.804 for the ADNI, ANM1, and ANM2 datasets,447

respectively [8]. Interestingly the three DEGs iden-448

tified in the current work did not overlap with the449

334 DEGs reported by Lee et al. One of the genes450

(NDUFS5) that was used for AD versus CN clas-451

sification in the current work has been previously452

reported, along with other 314 DEGs to be statis-453

tically significant (p = 1.2E-8) for CN versus AD454

classification, and along with 204 other DEGs for CN 455

versus MCI conversion (p = 9.8E-8) [20]. Voyle et al. 456

have also identified the NDUFS5 gene as a DEG in the 457

classification of CN versus AD, with variable impor- 458

tance of 5.9 on the 4.7-11.9 scale [9]. With using 13 459

DEGs their predictive model achieved 0.724 test set 460

AUC on the merged ANM dataset, which was lower 461

than the 0.903 and 0.737 test set AUC for ANM1 and 462

ANM2 respectively reported in the current work. The 463

DFFB gene’s association with AD reported in the cur- 464

rent work is further supported by the earlier research 465

showing that DFFB gene expression decreased in 466

response to administration of neurotoxic fragment of 467

amyloid-� protein A�25–35 in the mouse model of 468

AD [21]. Recently Madrid et al. reported NGDN as 469

one of the 15 genes associated with AD irrespective 470

of the APOE haplotype [22]. This way, all three genes 471

found to be associated with CN versus AD classifi- 472

cation in the current study have been implicated by 473

prior research to be involved in AD pathology. To the 474

best of our knowledge, this is the first time the three 475
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Fig. 5. Transcriptional profile for DUSP13 gene in ADNI (a), ANM1 (b), and ANM2 (c).

Table 3
Variable contributions to the MCI-to-AD model performance, characterized by the change in deviance
and corresponding statistical significance from the Chi-Squared distribution. Values in bold highlight

statistically significant results at p < 0.05

Variable-to- ADNI ADNI ANM1 ANM1
Eliminate Change in p Change in p

Deviance Deviance

Right Hippocampus Volume 16.29 5.5E-5 8.44 3.7E-3
# APOE Risk Alleles 4.88 2.7E-2 0.22 6.4E-1
DUSP13 Gene Expression 4.33 3.8E-2 2.67 1.0E-1

DEGs above have been used together with Age and476

APOE, as part of the mathematical model to clas-477

sify CN versus AD. Besides delivering competitive478

performance to the previously reported models with479

higher number of DEGs, using fewer gene expression480

probes offers several advantages, including better481

interpretability and lower analysis cost. As we show482

through the analysis of deviance in the logistic regres-483

sion model, some of the DEGs are only identifiable by484

carrying out simultaneous DEG selection in all three485

datasets. The ability to assess each feature’s contri-486

bution to the modelled outcome gives generalized487

additive models an interpretability advantage over 488

other modeling techniques. 489

Predicting MCI-to-AD conversion by combining 490

imaging and genetic variables 491

The current study explored whether a 492

neuroimaging-APOE predictive model for MCI- 493

to-AD conversion can be enhanced by including 494

transcriptional profile features from the blood. 495

Through the exhaustive search for the DEGs that 496

would consistently improve MCI-to-AD conversion 497
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Table 4
Summary information on the DEGs identified in the AD versus CN and MCI to AD conversion classification tasks (NCBI)

Classification Gene/Probe Summary
task (Affymetrix Probe;

Illumina v3 Probe;
Illumina v4 Probe)

AD versus CN (Gene
Expression Only)

NGDN
(11743867 at;
ILMN 2324998;
ILMN 2324998)

Neuroguidin is an EIF4E (MIM 133440)-binding protein
that interacts with CPEB (MIM 607342) and functions as a
translational regulatory protein during the development of
the vertebrate nervous system.

DFFB
(11745694 x at;
ILMN 1678962;
ILMN 1678962)

DNA fragmentation factor (DFF), triggers both DNA
fragmentation and chromatin condensation during
apoptosis.

NDUFS5
(11757665 x at;
ILMN 1776104;
ILMN 1776104)

Encodes one of the iron-sulfur protein (IP) components of
mitochondrial NADH:ubiquinone oxidoreductase (complex
I).

MCI to AD
Conversion (with
Imaging)

DUSP13
(11728562 a at;
ILMN 1776240;
ILMN 2373666)

Member of the protein-tyrosine phosphatase superfamily,
cooperates with protein kinases to regulate cell proliferation
and differentiation.

prediction in both ADNI and ANM1 datasets, only498

the DUSP13 gene met the criteria for minimum499

improvement in cross-validation AUC of > 0.015.500

AD-converters in ADNI, ANM1, and ANM2 showed501

upregulated expression of the DUSP13 gene when502

compared to non-converters. While this gene is not503

commonly associated with AD pathology, research504

has linked the DUSP13 upregulation to adaptive505

response to oxidative stress [23]. Chronic inflam-506

mation, one of the characteristics of AD pathology,507

has been suggested to start with proinflammatory508

cytokines released by activated macrophages in the509

blood [24]. In this context, the DUSP13 upregulation510

in the AD patient group supports this suggestion and511

makes the DUSP13 gene expression a potentially512

valuable companion to imaging biomarkers for513

AD prognosis. Due to the short 1–2-year delay514

in MCI-to-AD conversion studied here, and the515

difference in the follow up period in ANM (1 year)516

and ADNI (2 years), the DUSP13 gene’s role in517

predicting longer time window conversion remains518

unclear.519

One of the limitations of the current study is that520

we treated each predictive biomarker in the pre-521

dictive model as an independent feature, whereas522

a more complex relationship likely exists between523

AD-related biomarkers. Future research may ben-524

efit from using graphical theory tools to examine525

biomarker-to-biomarker connections in the context526

of AD pathology.527

Another limitation of the current study stems528

from not considering other, likely more sensitive529

blood-based biomarkers such as p-tau species includ- 530

ing p-tau181, p-tau217, p-tau231, and glial fibrillary 531

acidic protein (GFAP) [25]. A promising future direc- 532

tion would be to explore the potential of combining 533

DEGs and the p-tau species/GFAP biomarkers in 534

the context of improving prognosis quality for MCI 535

patients. 536
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Antúnez-Almagro C, DeStefano A, Cabrera-Socorro A, 726

Sims R, Van Duijn CM, Boerwinkle E, Ramírez A, For- 727
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